
Rust for Linux

User guidance

Kangrejos 2024

Dirk Behme <dirk.behme@gmail.com>



Abstract:

The Rust for Linux (RFL) project is gaining momentum. More and more abstractions are developed 
and discussed. First basic abstractions are even merged in mainline. The change rate increases. 
While this is really good, it increases the effort to keep an overview, as well. And this overview is 
even needed for users of the RFL abstractions. Typical user questions are for example: How do I use 
abstraction X? Or: I use abstraction Y from x month ago. Now it has changed. What is changed? How 
do I adapt to that change? Or: What is new in latest mainline and rust-next/devel branch? Discuss 
these topics and talk about options to support users for easy RFL usage.

(skip this page at presentation)



Introduction

• For beginners, Rust is said to have a steep learning curve

• Rust for Linux (RFL) even goes ‘on top’ of Rust in the sense of
• it is slightly different to ‘normal’ Rust (e.g. no_std etc)
• users need to use abstractions
• heavy development implying frequent changes

How can we make life easier for RFL users? 



Introduction (contd)

At the moment, typically the developer of an abstraction and the user of the abstraction 
(driver, file system etc) are the same. I.e. the user of the abstraction develops the required 
abstraction, as well. With this, the developer ‘knows all about the abstraction’.

However, there will be more and more users of RFL. Without much or deep knowledge of the 
RFL details and the abstractions.

This will result in questions like:

• How do I use abstraction X?

• I use abstraction Y from x month ago. Now it has changed. What is changed?
How do I adapt to that change?

• What is new in latest mainline and rust-next/devel branch?

• ….



Example #1: How to write a module?



Example #2: How to use the RFL changes from one kernel version to the next one?



Example #3: How to use the RFL changes from one kernel version to the next one? 

Example question: What is this change about and what needs to be done to adapt to it?



Example #4

It took me some significant 
time to figure out how this 
abstraction works and how it’s 
intended to be used.

The driver just wants to use 
this to parse the device tree …

https://github.com/AsahiLinux/linux/commit/9e496b356ee8e25f9bee9258491aa6ae3a4f1ddf

https://github.com/AsahiLinux/linux/commit/9e496b356ee8e25f9bee9258491aa6ae3a4f1ddf


Example #5

https://lore.kernel.org/rust-for-linux/2024072626-bluff-remark-3827@gregkh/

https://lore.kernel.org/rust-for-linux/2024072626-bluff-remark-3827@gregkh/


Whats about the C world?

If you are about to write a Linux kernel driver in C, i.e. you want to use the various 
device driver interfaces (in kernel APIs), we usually have various similar existing, 
tested and mainlined drivers serving as usage example. This existing code gives 
even beginners and not that experienced developers a path how the in kernel APIs 
are supposed to be used. Due to the young history of RFL this doesn’t exist for RFL, 
yet.



Discussion

What options do we see to ease the usage of RFL?

• What’s about usage examples in samples/rust/ for each abstraction?

• What’s about ensuring that the inline examples / Kunit tests are verbose?

• What’s about more documentation about dos and don’ts?

• What’s about regular “RFL news”?

• What’s about some description what’s new in each –rc1, how to use it?
And what’s new in rust-next/devel?

• Do we consider the functionality the abstractions expose as new “API”?
Do we need a “RFL in kernel (abstraction) API” documentation?

Do we need to “translate” this to RFL (abstractions)? 


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

