Rust for Linux
User guidance

Kangrejos 2024

Dirk Behme <dirk.behme@gmail.com>

Abstract:

The Rust for Linux (RFL) project is gaining momentum. More and more abstractions are developed
and discussed. First basic abstractions are even merged in mainline. The change rate increases.
While this is really good, it increases the effort to keep an overview, as well. And this overview is
even needed for users of the RFL abstractions. Typical user questions are for example: How do | use
abstraction X? Or: | use abstraction Y from x month ago. Now it has changed. What is changed? How
do | adapt to that change? Or: What is new in latest mainline and rust-next/devel branch? Discuss
these topics and talk about options to support users for easy RFL usage.

(skip this page at presentation)

Introduction

* For beginners, Rust is said to have a steep learning curve

* Rust for Linux (RFL) even goes ‘on top’ of Rust in the sense of
e itis slightly different to ‘normal’ Rust (e.g. no_std etc)
* users need to use abstractions
* heavy development implying frequent changes

How can we make life easier for RFL users?

Introduction (contd)

At the moment, typically the developer of an abstraction and the user of the abstraction
(driver, file system etc) are the same. |.e. the user of the abstraction develops the required
abstraction, as well. With this, the developer ‘knows all about the abstraction’.

However, there will be more and more users of RFL. Without much or deep knowledge of the
RFL details and the abstractions.

This will result in questions like:

e How do | use abstraction X?

* | use abstraction Y from x month ago. Now it has changed. What is changed?
How do | adapt to that change?

 Whatis new in latest mainline and rust-next/devel branch?

Example #1: How to write a module?

£3 Help > "Mentorship Session: Writing Linux Kernel Modules in Rust" AUG 3
e : o
Fvrw Nikolai Shv 10:31

(455> |

AN

AL I'd like to know are many things changed since this video was made?
https://youtu.be/-I-8BWrGHEGI?si=s9fblISVwa8xNpV5

* Should | use origin/rust branch to build kernel?
» Are there any "more up to date” tutorials which | can refer to?

My main goal is to create a linux kernel module in Rust with some C code. Basically it's just a kernel module which was

written in C and | want to rewrite it in Rust (openvpn-dco)[https://github.com/OpenVPN/ovpn-dcol.
Does this version of linux has enough Rust support to make this kernel module work with Rust?

I'm completely new in systems programming.

- l‘

b IZ 4 Youdon'twant the rust branch anymore. See the website: https://rust-for-linux.com/

Example #2: How to use the RFL changes from one kernel version to the next one?

&3 General » v How to use new FileShareMode from struct file abstraction? MAY 30
@B DirkBehme .« 14:02

7D Switching to recent v6.10-rc1 based rust-dev it looks like the rust: file: add Rust abstraction for struct file has more or less
recently added a new FileShareMode.

So far | have used the v6.9-rc1 version of rust-dev which didn't had that.

| did the adaption for my File users by adding <NoFdgetPos> everywhere. For example:

- _file: &File,
+ _file: &File<NoFdgetPos>,

While this seem to make the compiler happy, I'm not sure if this is the way to go?

Do we have any usage examples of this? l.e. how to convert from the v6.9-rc1 version of the struct file abstraction to the
v6.10-rc1 one?

7.\, Benno Lossin : 14:12
uﬁ I think @Alice Ryhl is still developing the file APl and there will be additional changes (IIRC NoFdgetPos will get
removed). | haven't yet looked at the newer versions, so | might be wrong, but what generic parameter you passto File
depends on how that file is shared.

Alice Ryhl -.: 14:13

Most likely the next version will rename File<NoFdgetPos> to just File and File<MaybeFdgetPos> to LocalFile.

Just using File<NoFdgetPos> everywhere should be fine. 14:16

(48 You)

Example #3: How to use the RFL changes from one kernel version to the next one?

€3 General > Abstraction for struct device in driver-core git JUN 19
‘,\’Vg Dirk Behme 06:49
Q7D For everybody not following the mailing list that closely just wanted to mention here that rust: add abstraction for struct

Example question: What is this change about and what needs to be done to adapt to it?

device and rust: add firmware abstractions made it into Greg's driver-core-testing. If | understood correctly this is planned
to be merged into mainline for upcoming 6.11-rc1.

Many thanks to everybody working on this! -
&1

Fabien Parent 19:32

For people usin : rently working on rebasing them on top of it. Though it
taking 2851t more time given the changes made to device::Data.

Example #4

It took me some significant
time to figure out how this
abstraction works and how it’s
intended to be used.

The driver just wants to use
this to parse the device tree ...

= O Asahilinux / linux

<> Code (lssues 63 17 Pull requests 7 ® Actions

Commit

rust: of: Add OF node abstraction

This abstraction enables Rust drivers to walk Device Tree nodes and
query their properties.

Signed-off-by: Asahi Lina <lina@asahilina.net>

¥ gpu/rust-wip-6.3

< P asahilina authored and marcan committed on May 30, 2023

(D Showing 4 changed files with 485 additions and 2 deletions.

+
Q Filter changed files v Y3 EEE 0 rust/

t 00 -
..... @@ -19
v BB rust
10 10 #inclu
v B bindings 11 11 #inclu
sy 12 12 #inclu
0 bindings_helper.h O] .
13 + #inclu
[helpers.c = 14 + #inclu
15 + #inclu
v 8 kernel 13 16 #inclu
D device.rs E] 14 17 #inclu
15 18 #inclu
[ofrs = 5

E Projects

) Security |22 Insights

bindings/bindings_helper.h d;

,6 +10,9 @@

de <linux/device.h>

de <linux/io-pgtable.h>

de <linux/ktime.h>

de <linux/of.h>

de <linux/of_address.h>

de <linux/of_device.h>

de <linux/platform_device.h>
de <linux/refcount.h>

de <linux/wait.h>

v 'y 14 HEEEE rust/helpers.c LD

..... @@ -33

337 }

338 33 E

339 339
3486 + bool r
341 + {
342+
343 + 3}
344+

7,6 +337,20 @@ const struct of device_id *rust_helper_of_match_device(

EXPORT_SYMBOL_GPL(rust_helper_of_match_device);

ust_helper_of_node_is_root(const struct device_node *np)

return of_node_is_root(np);

EXPORT_SYMBOL_GPL(rust_helper_of node_is_root);

https://github.com/Asahilinux/linux/commit/9e496b356ee8e25f9bee9258491aabae3a4flddf

Q Type] to search

https://github.com/AsahiLinux/linux/commit/9e496b356ee8e25f9bee9258491aa6ae3a4f1ddf

rust-for-linux.vger.kernel.org archive mirror
searchl help / color / mirror / Atom feed

From: Greg KH <gregkh@linuxfoundation.org>
Example #5 To: Lyude Paul <lyude@redhat.com>
Cc: rust-for-linux@vger.kernel.org,
"Danilo Krummrich" <dakr@redhat.com>,
airlied@redhat.com, "Ingo Molnar" <mingo@redhat.com>,
"Will Deacon" <will@kernel.org>,
"Waiman Long" <longman@redhat.com>,
"Peter Zijlstra" <peterz@infradead.org>,
"Miguel Ojeda" <ojeda@kernel.org>,
"Alex Gaynor™ <alex.gaynor@gmail.com>,
"Wedson Almeida Filho"™ <wedsonaf@gmail.com>,
"Boqun Feng" <boqun.feng@gmail.com>,
"Gary Guo" <gary@garyguo.net>,
"Bjorn Roy Baron" <bjorn3_gh@protonmail.com>,
"Benno Lossin" <benno.lossin@proton.me>,
"Andreas Hindborg" <a.hindborg@samsung.com>,
"Alice Ryhl" <aliceryhl@google.com>
Subject: Re: [PATCH ©/3] rust: Add irq abstraction, IrqSpinlLock
Date: Fri, 26 Jul 2024 07:39:59 +0200 [thread overview]
Message-ID: <2024072626-bluff-remark-3827@gregkh> (raw)
In-Reply-To: <20240725222822.1784931-1-1yude@redhat.com>

On Thu, Jul 25, 2024 at ©6:27:49PM -0400, Lyude Paul wrote:

> This adds a simple interface for disabling and enabling CPUs, along with
> the ability to mark a function as expecting interrupts be disabled -

> along with adding bindings for spin_lock_irgsave/spin_lock_irqgrestore().

(Do you have some example code that actually uses this?]) Without that,
it's hard, if not impossible, to review it to see how it works and if it
works properly.

thanks,

greg k-h
https://lore.kernel.org/rust-for-linux/2024072626-bluff-remark-3827 @gregkh/

https://lore.kernel.org/rust-for-linux/2024072626-bluff-remark-3827@gregkh/

Whats about the C world?

If you are about to write a Linux kernel driver in C, i.e. you want to use the various
device driver interfaces (in kernel APls), we usually have various similar existing,
tested and mainlined drivers serving as usage example. This existing code gives
even beginners and not that experienced developers a path how the in kernel APIs
are supposed to be used. Due to the young history of RFL this doesn’t exist for RFL,
yet.

DEVICE DRIVERS

.
£

4 JONATHAN CORBET, ALESSANDRO RUBINI

O’REILLY & GREG KROAH-HARTMAN

Discussion

What options do we see to ease the usage of RFL?

* What’s about usage examples in samples/rust/ for each abstraction?
e What’s about ensuring that the inline examples / Kunit tests are verbose?
* What’s about more documentation about dos and don’ts?

 What’s about regular “RFL news”?

* What’s about some description what’s new in each —rcl, how to use it?
And what’s new in rust-next/devel?

* Do we consider the functionality the abstractions expose as new “API”?
Do we need a “RFL in kernel (abstraction) API” documentation?

JONATHAN CORBET, ALESSANDRO RUBINI

Do we need to “translate” this to RFL (abstractions)? O'REILLY"

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

